История элемента №75, подобно истории многих других элементов, начинается с 1869 г., года открытия периодического закона.
Недостающие элементы VII группы Менделеев называл «экамарганцем» и «двимарганцем» (от санскритских «эка» – один и «дви» – два). Правда, в отличие от экабора (скандия), экаалюминия (галлия) и экасилиция (германия), эти элементы не были описаны подробно. Впрочем, сообщений, авторы которых претендовали на открытие двимарганца, вскоре появилось довольно много. Так, в 1877 г. русский ученый С. Керн сообщил об открытии элемента дэвия, который мог бы занять место двимарганца в менделеевской таблице. Сообщение Керна не приняли всерьез, потому что повторить его опыты не удалось. Однако открытая Керном качественная реакция на этот элемент (через роданидный комплекс) остается основой аналитического метода определения рения…
Систематические поиски неоткрытых аналогов марганца начали в 1922 г. немецкие химики Вальтер Ноддак и Ида Такке, ставшая позже супругой Ноддака. Они отлично представляли себе, что найти элемент №75 будет нелегко: в природе элементы с нечетными атомными номерами распространены всегда меньше, чем их соседи слева и справа. А здесь и четные соседи – элементы №74 и 76, вольфрам и осмий, – достаточно редки. Распространенность осмия составляет величину порядка 10–6%, поэтому для элемента №75 следовало ожидать величины еще меньшей, примерно 10–7%. Так, кстати, и оказалось… Первоначально для поисков нового элемента были избраны платиновые руды, а также редкоземельные минералы – колумбит, гадолинит. От платиновых руд вскоре пришлось отказаться – они были слишком дороги. Все внимание исследователи – супруги Ноддак и их помощник Берг – сосредоточили на более доступных минералах, и им пришлось проделать поистине титаническую работу. Выделение препаратов нового элемента в количестве, доступном для рентгеноскопического исследования, потребовало многократного повторения однообразных и долгих операций: растворение, выпаривание, выщелачивание, перекристаллизация. В общей сложности за три года было переработано более 1600 образцов. Лишь после этого в рентгеновском спектре одной из фракций колумбита были обнаружены пять новых линий, принадлежащих элементу №75. Новый элемент назвали рением – в честь Рейнской провинции, родины Иды Ноддак.
5 сентября 1925 г. в собрании немецких химиков в Нюрнберге Ида Ноддак сообщила об открытии рения. В следующем году та же группа ученых выделила из минерала молибденита MoS2 первые 2 мг рения.
Через несколько месяцев после этого открытия чешский химик Друце н англичанин Лоринг сообщили о том, что они обнаружили элемент №75 в марганцевом минерале пиролюзите MnO2. Таким образом, число ученых, открывших рений, увеличилось до пяти. Позже почетный член Чехословацкой академии наук И. Друце не раз писал, что, кроме них с Лорингом, супругов Ноддак и Берга, честь открытия рения должны бы разделить еще два ученых – Гейровский и Долейжек.
Выдающийся изобретатель Я. Гейровский первым в мире ввел в практику химических исследований новый прибор – полярограф. Одним из первых открытий, сделанных с помощью полярографа, было обнаружение следов двимарганца в неочищенных марганцевых соединениях, В. Долейжек подтвердил присутствие нового элемента в препаратах Гейровского и Друце рентгенографическими исследованиями. Этот видный ученый погиб в фашистском концлагере в Терезине в начале 1945 г.
Минералы
Первый грамм сравнительно чистого металлического рения получен супругами Ноддак в 1928 г. Чтобы получить этот грамм, им пришлось переработать более 600 кг норвежского молибденита. Позже были установлены новые закономерности распространения рения в различных рудных месторождениях, выявлены условия, благоприятные для накопления этого редкого и рассеянного элемента. Вернее даже будет сказать – крайне редкого. По подсчетам академика А.П. Виноградова, содержание рения в земной коре не превышает 7·10–8%. Это значит, что в природе его в 5 раз меньше, чем золота, в 100 раз меньше, чем серебра, в 1000 раз меньше, чем вольфрама, в 900 тыс. раз меньше, чем марганца, и в 51 млн раз меньше, чем железа.
О рассеянности рения можно судить по таким фактам. В природе он практически всегда встречается лишь в виде изоморфной примеси в минералах других элементов. Его обнаружили в десятках минералов: от повсеместно распространенного пирита до редких платиновых руд. Следы его находят даже в бурых углях.
В джезказганских медных и медно-свинцово-цинковых рудах найден в виде тонких прожилков длиной не больше 0,1 мм минерал джезказганит, единственный пока изученный собственно рениевый минерал. Исследования советских ученых показали, что этот минерал содержит сульфид рения, а также сульфиды молибдена и свинца. Ориентировочная формула джезказганита Pb4Re3Mo3S16.
Редкий и рассеянный рений мигрирует в земной коре. В подземных водах растворены вещества, способные воздействовать на ренийсодержащие минералы. Под влиянием этих веществ заключенный в них рений окисляется до Re2O7 (высший окисел, который образует сильную одноосновную кислоту HReO4). Этот окисел в свою очередь может реагировать с окислами и карбонатами щелочных металлов. При этом образуются водорастворимые соли – перренаты.
Такими процессами объясняют отсутствие рения в окисленных рудах цветных металлов и присутствие его в водах шахт и карьеров, где добывают руды многих металлов. В воде артезианских скважин и естественных водоемов, расположенных близ ренийсодержащих рудных месторождений, тоже находят следы этого элемента.
Казалось бы, в соответствии с положением элемента №75 в таблице Менделеева, он должен накапливаться прежде всего в минералах своего аналога – марганца. Но, вопреки ожиданиям, в марганцевых рудах рений есть далеко не всегда, а если и есть, то в очень незначительных количествах. Во всяком случае, промышленного интереса – как источник рения – марганцевые руды пока не представляют. Самым богатым промышленным ренийсодержащим минералом остается молибденит MoS2, в котором находят до 1,88% рения.
Во многих рудных месторождениях обнаружен элемент №75, но не известно ни одного месторождения, промышленную ценность которого определял бы только рений. Этот металл есть в медистых песчаниках, медно-молибденовых и полиметаллических рудах, в колчеданах. И почти всегда рения в них очень мало – от миллиграммов до нескольких граммов на тонну. Нетрудно подсчитать, какое огромное количество руды надо переработать, чтобы получить хотя бы килограмм рения. При этом не следует забывать о неизбежности потерь металла в процессе переработки руды. Не случайно же рениевый потенциал всех месторождений капиталистических стран, вместе взятых, еще недавно определялся всего в тысячу тонн.
Получение рения
Итак, любое ренийсодержащее сырье – это комплексное сырье, и не рений его главное богатство. Естественно поэтому, что способы извлечения рения во многом зависят от специфики технологии производства основных металлов. Отсюда – разные технологические схемы и большие потери: далеко не весь содержащийся в руде элемент №75 превращается в рениевую продукцию. Так, при флотационном обогащении молибденовых и медно-молибденовых руд от 40 до 80% бывшего в руде рения переходят в молибденовый концентрат, а в рениевые слитки в конечном счете превращается лишь незначительная часть этого металла. По американским данным, из всех молибденовых концентратов в 1965 г. было извлечено лишь 6% содержавшегося в них рения.
Самые большие потери происходят при обжиге концентратов и в процессе плавки. По нынешней технологии молибденовые концентраты обязательно подвергают окислительному обжигу при 550…650°C. Окисляется и рений, в основном до Re2O7. А семиокись рения летуча (температура кипения – всего 362,4°C). В итоге много рения уходит в трубу с отходящими газами.
Степень возгонки рения зависит от условий обжига и конструкции печи: в многоподовых печах она составляет 50…60%, в печах кипящего слоя – до 96%. Таким образом, чтобы получить рений на молибденовых предприятиях, нужно прежде всего уловить его из газов. Для этого на заводах устанавливают сложные системы циклонов, скрубберров, электрофильтров.
Рений может быть извлечен и из другого полупродукта молибденового производства – из растворов, получаемых при выщелачивании молибденового огарка.
При всем многообразии применяемых технологических схем переработки ренийсодержащих полупродуктов на металлургических заводах можно выделить две основные стадии получения рения: перевод его соединений в растворы и выделение из них металла. В зависимости от состава эти полупродукты (чаще всего пылевидные) выщелачивают растворами щелочей, кислот или солей, а иногда и просто горячей водой. Из полученных при этом растворов рений извлекают методами адсорбции, ионного обмена, экстракции, электролиза или же осаждают малорастворимые соединения элемента №75, например перренаты и сульфиды рения.
Для получения рениевого порошка перренат аммония восстанавливают водородом в трубчатых печах при 800°C. Этот порошок превращают затем в компактный металл – в основном методами порошковой металлургии, реже зонной плавкой и плавкой в электронно-лучевых печах. В последние десятилетия разработаны новые способы гидрометаллургической переработки ренийсодержащих концентратов. Эти способы более перспективны прежде всего потому, что нет тех огромных потерь рения, которые неизбежны в пирометаллургии. Рений извлекают из концентратов различными растворами – в зависимости от состава концентрата, а из этих растворов – жидкими экстрагентами или в ионнобменных колоннах.
Первое промышленное производство рения было организовано в Германии в 30-х годах. Скромное по масштабам (мощность установки составляла лишь 120 кг в год), оно полностью удовлетворяло мировую потребность в этом металле. После начала второй мировой войны американцы начали извлекать рений из молибденовых концентратов и в 1943 г. получили 4,5 кг своего рения. С тех пор число стран – производителей рения значительно выросло. Помимо США, этот металл из минерального сырья извлекают в СССР, ГДР, ФРГ, Англии, Франции, Бельгии и Швеции.
Но и в наши дни мировое производство рения невелико – всего лишь несколько тонн металла в год. Использование – тоже. В 1969 г. все капиталистические страны Западной Европы вместе с США израсходовали лишь около тонны рения.
Рений – очень дорогой металл. В том же 1969 г. килограмм порошкообразного рения стоил в США около 1320 долларов – в 20 раз дороже танталового и в 170 раз – молибденового порошка.
Тем не менее число исследований элемента №75, его соединений и сплавов год от года растет, разрабатываются новые технологические схемы его получения, вовлекаются в производство новые виды ренийсодержащего сырья. И средств на это, судя по всему, не жалеют. Попробуем разобраться в причинах повышенного интереса к рению.
Свойства
В полном соответствии с положением в таблице Менделеева рений во многом похож па марганец. Однако он намного тяжелее и, если можно так выразиться, благороднее своего более распространенного аналога. По устойчивости к действию большинства химических реагентов рений приближается к своим соседям справа – платиновым металлам, а по физическим свойствам – к тугоплавким металлам VI группы – вольфраму и молибдену. С молибденом его роднит и близость атомного и ионных радиусов. Например, радиусы ионов ReH и Мо4+ отличаются всего на 0,04 ?. Сульфиды MoS2 и ReS2 образуют к тому же однотипные кристаллические решетки. Именно этими причинами объясняют геохимическую связь рения с молибденом.
Рений – один из самых тугоплавких металлов. По температуре плавления (3170°C) и кипения (5870°C) он уступает лишь вольфраму (3410 и 6690°C). Рений немного тяжелее вольфрама (при 20°C плотность соответственно 21,02 и 19,32 г/см3). Но рений намного пластичнее вольфрама. Его можно прокатывать, ковать, вытягивать в проволоку при обычных условиях. Заметим тут же, что пластичность рения сильно зависит от чистоты.
Еще одно важное свойство – высокая жаропрочность рения. При температуре до 2000°C рений лучше сохраняет прочность, нежели молибден, вольфрам, ниобий. Да и прочность у него (в интервале от 500 до 2000°C) больше, чем у этих тугоплавких металлов. В то же время элемент №75 обладает высокой коррозионной стойкостью: в обычных условиях он почти не растворяется в соляной, плавиковой и серной кислотах. Это одна из черт, роднящих рений с платиной.
Компактный рений – серебристый металл. При невысокой температуре он годами совершенно не тускнеет на воздухе. Лишь при 300°C можно наблюдать заметное окисление этого металла; интенсивно оно идет лишь при температуре выше 600°C. Это значит, что рений лучше противостоит окислению, чем молибден и вольфрам; к тому же он совершенно не реагирует с азотом и водородом.
На редкость благоприятное сочетание физических и химических свойств (и плюс хорошая свариваемость) определило интерес к рению со стороны тех областей науки и техники, которые могут позволить себе большие затраты ради достижения нужных свойств. Правда, и эти отрасли ищут пути наиболее рационального использования рения. Рений в основном идет в сплавы, более дешевые, чем он сам, а из чистого рения делают лишь особо ответственные малогабаритные детали. И, конечно, рением покрывают другие металлы.
Сплавы
Известно, что в 1968 г. почти две трети рения, проданного в США, пошли на изготовление тугоплавких сплавов. Это в основном сплавы рения с вольфрамом и молибденом. В 1955 г. в Англии был обнаружен так называемый «рениевый эффект»: как выяснилось, рений повышает одновременно и прочность, и пластичность молибдена и вольфрама.
В нашей стране используются сплавы вольфрама с 5, 20 или 27% рения (ВР-5, ВР-20, ВР-27ВП) и молибдена – с 8, 20 и 47% рения, а также молибден-вольфрам-рениевые сплавы. Эти сплавы высокопрочны, пластичны (и, следовательно, технологичны), хорошо свариваются. Изделия из них сохраняют своп свойства и форму в самых трудных условиях эксплуатации. Рений работает на морских судах и самолетах, в космических кораблях и в полярных экспедициях. Он стал важным материалом для электронной и электротехнической промышленности. Именно здесь наиболее полно используется комплекс выдающихся свойств рения и его сплавов. Из них делают нити накала, сетки, подогреватели катодов. Детали из сплавов рения есть в электронно-лучевых трубках, приемно-усилительных и генераторных лампах, в термоионных генераторах, в масс-спектрометрах и других приборах.
Элемент №75 стал важен для приборостроения: из ренийсодержащих сплавов делают, в частности, керны измерительных приборов высших классов точности. Керн – это опора, на которой вращается рамка прибора. Материалы для кернов должны быть немагнитны, коррозионностойки, тверды. И еще они должны как можно медленнее изнашиваться в процессе эксплуатации. Таким условиям отвечает многокомпонентный сплав на кобальтовой основе 40-КНХМР, легированный 7% рения. Этот же сплав используют для производства упругих элементов крутильных весов и гироскопических приборов.
В геодезическо-маркшейдерских приборах очень важна работа стабилизирующих устройств – оптических пли механических узлов, закрепленных на тонких металлических подвесах. Такие подвесы есть в нивелирах, теодолитах, гиротеодолитах. В лучших из них подвесами служат тонкие проволочки и ленточки из рениевых сплавов.
Термопары, в которых работают сплавы рения и вольфрама, служат для измерения высокой температуры (до 2600°C), Такие термопары значительно превосходят применяемые в промышленности стандартные термопары из вольфрама и молибдена.
Для атомной техники сплавы, содержащие рений, – перспективный конструкционный материал. Еще в 1963 г. стали делать цельнотянутые трубки из сплава вольфрама с 26% рения. Их назначение – стать оболочками тепловыделяющих элементов и некоторых других деталей, работающих в реакторах при температуре от 1650 до 3000°C.
С каждым годом рений и его сплавы все шире (и все разнообразнее) применяют в авиационной и космической технике. В частности, сплав тантала с 2,5% рения и 8% вольфрама предназначен для изготовления теплозащитных экранов аппаратов, возвращающихся из космоса в атмосферу Земли.
Катализ
В течение многих лет мировая рениевая промышленность находилась в состоянии относительного покоя. Производство этого металла (в капиталистических странах) держалось в пределах одной-двух тонн в год, цены оставались на одном и том же уровне, а поскольку этот уровень очень высок, спрос на металл был даже ниже предложения. Расход рения на изготовление миниатюрных изделий (детали электронных ламп, термопары и т.д.) весьма незначителен, и даже бурный рост этих производств мало сказывался на масштабах производства рения. Чтобы в рениевой промышленности произошли существенные перемены, были нужны новые, более крупные потребители этого редкого металла.
И такой потребитель появился. В 1969…1970 гг. нефтеперерабатывающая промышленность начала промышленное освоение новых катализаторов. Появление рениево-платиновых катализаторов позволило намного увеличить выход бензинов с высоким октановым числом. Более того, использование этих катализаторов вместо платиновых позволяет на 40…45% увеличить пропускную способность установок. К тому же срок службы новых катализаторов в среднем в четыре раза больше, чем старых.
Массовое внедрение рениевых катализаторов вызвало резкий скачок в спросе на рений во многих капиталистических странах. И хотя цены на него тут же подскочили втрое, рений по-прежнему дешевле платины. Новые катализаторы быстро перекроили рениевые балансы многих стран. Если в конце 60-х годов большая часть производимого рения шла в сплавы, то в 1971 г. три четверти проданного в США рения было израсходовано на изготовление катализаторов. Известно и другое; в 1971 г. в США было продано примерно в три раза больше рения, чем в 1968 г.
Таким образом, будущее элемента №75 теперь связывают не только с жаропрочными сплавами, но и нефтеперерабатывающей промышленностью. И с нефтехимией.
Изотопы рения и возраст минералов
Известны всего два природных изотопа рения: t85Re и 1S7Re. Тяжелого изотопа на Земле почти вдвое больше, чем легкого (62,9 и 37,1% соответственно). Рений-187 радиоактивен, период полураспада – 5·1010…1011 лет. Испуская бета-лучи, рений-187 превращается в осмий. Существует рений-осмиевый метод определения возраста минералов. С помощью этого метода был определен возраст молибденитов из месторождений Норвегии и Чили. Оказалось, что норвежские молибдениты в большинстве случаев образовались примерно 700…900 млн лет назад. Молибдениты Чили (из месторождения Сан-Антонио) намного моложе: их возраст всего 25 млн лет.
Сопротивление водному циклу
У многих перегоревших ламп – и радиоламп, и обычных осветительных – внутри на стекле появляется темный налет. Это результат действия так называемого водного цикла. Смысл этого термина объяснить несложно: как бы тщательно мы ни откачивали воздух из ламп, некоторое количество водяных паров всегда остается; при высокой температуре вода диссоциирует па водород и кислород; последний взаимодействует с нагретым вольфрамом; окись вольфрама испаряется, а присутствующий там же водород ее восстанавливает. В результате мельчайшие частицы вольфрама перелетают с нити накаливания на стекло, образуя темное пятно, а сама нить становится тоньше и в конце концов обрывается. Лампа выходит из строя. Рений при 1300°C вдвое, а при 1750°C в 8 раз устойчивее к водному циклу, нежели вольфрам. Следовательно, сплавы вольфрама с рением – значительно лучший материал для изготовления нитей накаливания, чем чистый вольфрам.
Самоочищение
Электротехнику рений интересует и как материал для контактов. У рениевых контактов есть очень ценное свойство – способность к самоочищению. Обычно контакты выходят из строя оттого, что их поверхность покрывается слоем окисной пленки, препятствующей току, или же контакты свариваются. Рений, как и другие металлы, окисляется, когда между контактами возникает электрическая дуга, но семиокись рения Re2O7 летуча – в процессе естественного саморазогрева контактов она испаряется, и толщина окисной пленки остается минимальной. Эта пленка практически не увеличивает сопротивления контактов, но препятствует их свариванию. Самоочищение рениевых контактов гарантирует надежную работу многих электротехнических устройств на Земле и в космосе.
Самый богатый минерал? Возможно, «самый» – слишком сильно сказано
Минералы, богатые рением, до открытия джезказганита вообще не были известны. Тем не менее еще в 1932 г. финский ученый Артоваара опубликовал статью, в которой доказывал, что ему известен самый богатый рениевый минерал в мире. Этот минерал – финский гадолинит, представляющий собой силикат бериллия, двухвалентного железа и редкоземельных элементов, прежде всего иттрия. Более поздние исследования подтвердили несколько повышенное содержание рения в гадолините из Финляндии, однако оно не так велико, чтобы рений включили в принятую формулу минерала. Как и прежде, ее пишут так: Y2FeBe2Si2O10.
Легирование наоборот
Обычно легирующими металлами бывают металлы более дорогие, чем металл-основа. Примеров тому множество: легирование железа хромом, магния – редкими землями и так далее. Но иногда бывает и наоборот. Ценнейшие платинорениевые сплавы легируют, добавляя к ним иридий, кобальт, никель и даже железо – самый дешевый из всех металлов! Делают это не только для того, чтобы удешевить сплав: четыре добавки, из которых лишь одна – благородный металл, заметно улучшают механические свойства этого ультраблагородного сплава.